QPCR Tutorial

Version 3.0

Create Date Sep 10, 2008 Last modified May 25, 2009 by Stephan Pabinger

Table of content

Table of content
1 Introduction
1.1 Purpose
2 Save and Export Files
2.1 SDS
2.2 LC
2.3 CSV
3 Start QPCR and log in
4 Upload files
5 User Settings
6 Multiple Parse
7 Parser and analyzer logs
8 Run
8.1 List
8.2 Information
8.3 SDS
8.4 LC
9 Plate
9.1 Information
9.2 SDS
9.3 LC
10 Cq Analyze Results
11 Charts 17
11.1 Information17
11.2 SDS
11.3 LC
12 Experiment
13 Analysis
13.1 Cq Calculation Methods
13.2 Sample/Detector
13.3 Reference Genes
13.4 Normalization
14 Analysis results
14.1 Overview
14.2 Multiple Targets
14.3 Single Target
14.4 Quality Control
15 Statistical Test
15.1 Setup
15.2 Result
16 Export

1 Introduction

QPCR is a web application designed for storing, parsing, managing, and analyzing qPCR data. Including several different algorithms it can facilitate the analysis of qPCR results.

1.1 Purpose

This tutorial is written to give you an example of how to use the presented application. It shows the typical analysis path which starts with the export of files and ends with print ready charts. For this tutorial files of two different vendors are used:

- Applied Biosystems Abi Prism SDS 7000 (abbreviated as SDS)
- Roche Lightcycler LC 4.05 (abbreviated as LC)

Both files and the generated runs and experiments are available in the QPCR application if you log in as *user*: guest; *password*: guest. Moreover you can download them from <u>https://rtpcr.genome.tugraz.at/rtpcr/info/infoindex.html</u>

2 Save and Export Files

The first step in the analysis pipeline is to create the files that should be analyzed later on.

2.1 SDS

After performing the qPCR experiment the file needs to be saved. Go to file -> save and save the .sds file.

Next you need to export the component and deltaRn values which hold the values that are needed to analyze the experiment. These files will be later uploaded to the QPCR application.

2.2 LC

After performing the qPCR experiment the file is exported in the .IXO format. Select file -> export and save the experiment.

In addition the fluorescence values need to be exported. Therefore go to Run -> Online Data Display. Select all samples, choose fluorescence history, and select Fluorescence over Cycles. Right click on the chart and select Export.

Select the Data tab and tick XML as the file format. Then save the fluorescence values.

🊀 Export chart		_ 🗆 X
Picture Data		
Series: [(all) Format: ○ Iext ○ XML ○ HTML Table ○ Excel	Include: ✓ Point Index ✓ Point Labels ✓ Header Delimiter: Tab	
Filename: LCfileExport		
	Export	Cancel

2.3 CSV

If the QPCR does not support the files produced by your thermocycler you can upload your results using the generic CSV file format.

An example file and the corresponding description can be found at

Information about the CSV file format

For further information consult the user guide.

3 Start QPCR and log in

After performing the qPCR experiments and exporting the results you are ready to use the QPCR application. Therefore start your browser (e.g.: firefox) and go to

http://rtpcr.genome.tugraz.at/ .

Next you have to log in with your provided username and password (guest, guest).

4 Upload files

To upload the created files into the QPCR application, go to Upload & Parse and select New Multiple File Upload. Press Add Files and select the newly created files.

Experiment		×
Run	Multiple File Upload	n: 😰 Desktop 💿 👔 😥 🖽 📰
Upload & Parse		
New File Upload	Add Files Kemove	CriteExport.xml
New Multiple File Upload	File name Directory Size (Kb)	SD5.sds
Find File Upoad		_ SDS_Component.csv
Multiple Parse		Mag SDS_DeltaRn.csv
PCR Management		
Management		
	0 file(s), 0 Kb to upload left	
	Compress Files automatic	
	Upload Cancel	Dateiname: .xml" "SDS.sds" "SDS Component.csv" "SDS DeltaRn.csv" Add files
	You need a Java Plugin Version 1.5.x.	
	Using compression is only recommended for remote uploading data that can be well compressed	Alle Dateien
	(eg. plain text mes, xrm mes and not images or aneady compressed mes).	
	Cancel	

After pressing Upload the files are transmitted to the QPCR application and now available for further analysis steps.

Multiple File Upload

4	🖹 Add Files 🛛 🏶 Remove					
	File name	Directory	Size (Kb)	Info		×
Г	LCfile.ixo	C:\Documents and Settings\Administ	251			
Г	LCfileExport.xml	C:\Documents and Settings\Administ	158			
Г	SDS.sds	C:\Documents and Settings\Administ	1104		All files were successfully uploaded	
	SDS_Component.csv	C:\Documents and Settings\Administ	273	4		
	SDS_DeltaRn.csv	C:\Documents and Settings\Administ	37			
		5 file(s), 1824 Kb	to upload left			
Γ	Compress Files		automatic 💌			
		Upload	Cancel			

5 User Settings

Before the uploaded files are parsed and analyzed it is necessary to take a look at the user settings, which can be found by pressing User Settings in the top bar.

Here you can select your preferred Cq and Efficiency Analyzers, the NTC settings, and the chart background color. For more information click on the information icon.

User Settings

Information:	0				
		~			
	AnalyzerMiner				
Preferred Cq Analyzer(s):	AnalyzerCy0	1			
	SoFARAnalyzer	~			
		~			
	AnalyzerMiner				
Preferred Efficiency Analyzer(s):	AnalyzerRutledGene				
	LinRegAnalyzer	×			
Use NTCs in Cq analysis <mark>:</mark>	yes	~			
Use NTCs in Normalization:	no	•			
Chart Background:	#FFFFFF				

Update

6 Multiple Parse

The (Multiple) Parse window helps you to parse and analyze your uploaded files. It automatically detects all files that have not been parsed and displays them in a list. If the export file contains the name of the main file (e.g.: SDS -> SDS.sds, Export -> SDS_component.txt), it is automatically assigned to the corresponding main file. For each file/export file combination you can choose whether you want to parse or parse and analyze it.

By clicking on the submit button the files are sent to the parse and analyze services. Using the Progress Information page (accessible through a link in the top menu) you can keep track of the ongoing processes.

Multiple Parse

Display Files Owned By:	User	*
Display Files:	Not Parsed	•
	1	Update

Legend

Nr.	File	Export File 1	Export File 2	Export File 3	Parse	Analyze
1	File1	File1_DeltaRn	File1_Component		V	N
2	LCfile	LCfileExport 💽	Ţ		ঘ	N

Submit

Тор				
Legend				
Thermocycler	File	Export File 1	Export File 2	Export File 3
ABI 7000	The saved SDS file	Exported component file	Exported deltaRn file	
ABI 7500	The saved EDS file	Exported file including Sample Setup and Amplification Data		
ABI 7900	The saved SDS file	Exported clipped file		
LightCycler 2.0	The saved IXO file	Exported Fluorescence history (over Cycles) as XML file		
LightCycler 480	The saved IXO file	Exported Fluorescence history (over Cycles) as XML file		
Generic CSV file	The generated CSV file			

To view the progress information click on Progress Information in the top menu bar.

Progress Information

4 Pro	gressInforn	nations found		Page 1 of	1			go to page	go
Nr.	Туре	Method(s)	Progress		Run	File	1		
1	analyzing	AnalyzerMiner		45%	LCfile	LCfile	×		
2	parsing	AbiSDS Parser: LightCycler V1		100%	LCfile	LCfile	X		
3	analyzing	AnalyzerMiner		10%	File1	File1	X		
4	parsing	AbiSDS Parser: ABI V1d1		100%	File1	File1	×		

7 Parser and analyzer logs

After completing the parsing and analyzing processes the results can be view by clicking on New Parser Log and New Analyzer Log in the top menu bar.

] logout | User Settings | Progress Information | New Parser Log | New Analyzer Log |

The parser logs are shown in a list and are colored according to their result. The legend provides an explanation for each used color.

Pars	ser Lo	og						
_egend								ParserResults per page: 15 [25] 50 100
2 Parse	rResults f	ound			I	Page	1 of 1 🛛	go to page <mark>go</mark>
Nr. F	tun Name	Successful	Date	Viewed				
1 L	.Cfile	V	2008-09-12	Г	X			
2 F	ile1	V	2008-09-12	Γ	×			
								ParserResults per page: 15 [25] 50 100
2 Parse Top	rResults fo	ound				Page	1 of 1	go to page go
Color	Legend							
Color	Meanin	g						
Red	Parsing	was not succ	essful					
Orang	e Warnin	gs occurred - F	Parser result s	hould be	checked			
Blue	Parsing) was success	sful but result f	ile has no	t been vi	ewed		
Black	Parsing) was success	oful and result	file has be	en view	ed		

For each analyzed file an Analyzer Log is provided which displays information about the performed analysis.

Plate Name:	Isopn_2009	30430_2
Plate Id:	46704	
Successful:	yes	
Date:	14.05.2009	
Viewed:		
Analyzers	Successful	Error Message
AnalyzerMiner	V	no error

8 Run

8.1 List

Now you can have a look at the created runs; go to Run -> Find Runs. Each parsed file is associated with a run which represents a performed qPCR run (qPCR experiment). The first three symbols are used to inform the user that the run is currently analyzed, parsed, or deleted. By clicking on the gird icon you are linked to the plate layout. The chart symbol is a direct link to the charts of the run.

Experiment	D .	-									
Run	RI	10									
New Run											
Find Runs		~	Query	2		E	lit Dis	play Settings			
Analyzer Result			_							-	
Parser - Results											
Deleted Runs - Results	2 Ru	ns found	ŝ.						Page	1 of	1
Progress Information	2 Kuns round Page 1 of 1										
Upload & Parse	Nr.	Name		16	×			Date	-		
PCR Management	1	File1				▦	\mathbb{M}	2008-09-12	a i	83	×
Management	2	LCfile					W	2008-09-12	đ	93	×
	2 Pu	ns found	i.					1	Page	1 of	at i
	2 130	no rouna	2						rage	1.01	

8.2 Information

By clicking on the name of a run information about the used software, hardware, and instrument setting is displayed. Moreover this page provides information about the category, the used files, and the latest successful parsing job.

8.3 SDS

Displayed is the information page of the SDS run.

Name:	File1
Date:	12.09.2008
Category:	absolute 🔽
Hardware:	SDS 7000
Software:	ABI Prism 7000 SDS v1.1
Instrument Setting:	new Instrument Setting - exam 🔽
Plate:	File1
Protocol:	
Description:	
Experiments:	
Create Experiment including plate:	Create
File:	File1
Export Files:	File1_DeltaRn
	File1_Component
Plate:	Show
Deve a Dista Ellas	
rarse riate file:	
Currently parsing:	—
Latest successful parsing job:	2008-09-12 (File1)
Options:	☑ Names specified for wells are equal to sample names
Parser:	Parse

8.4 LC

Displayed is the information page of the LC run.

Name:	LCfile
Date:	12.09.2008
Category:	
Hardware:	LC_8020
Software:	LCS4 4.0.0.23
Instrument Setting:	new Instrument Setting - LCfile
Plate:	LCfile 🔽
Protocol:	•
Description:	
Experiments:	
Create Experiment including plate:	Create
File:	LCfile 🔽
Export Files:	LCfileExport
	T
	_
Plate:	Show
Parse Plate File:	
Currently parsing:	
Latest successful parsing job:	2008-09-12 (LCfile)
Options:	Names specified for wells are equal to sample names
Parser:	Parse

9 Plate

9.1 Information

The plate view (accessed by clicking on Show next to Plate in the run view) is used to display general information about the plate (barcode, description, used files) and to provide a list showing all wells or capillaries. By clicking on a well detailed information about this well is displayed.

9.2 SDS

Edit Plate

Name:	File1	
Barcode:		
Description:		
SDS File:	File1	
Rn Files:	File1_DeltaRn	
	File1_Component	
Size:	96 💌	Edit
Display Charts:	Show	
Display Ct Analyze Results:	Show	
Design:		

Nr.	Well Number	Omitted	Passive Reference	Target(s)	cDNA	Task	
1	A1		ROX	detector1	sample1	Sample	a
2	A2		ROX	detector1	sample1	Sample	a
3	A3		ROX	detector1	sample2	Sample	a
4	A4		ROX	detector1	sample2	Sample	a
5	A5		ROX	detector1	sample3	Sample	a
6	A6		ROX	detector1	sample3	Sample	ã
7	A7		ROX	detector1	sample4	Sample	ď
8	A8		ROX	detector1	sample4	Sample	ã
9	A9		ROX	detector1	sample5	Sample	ã
10	A10		ROX	detector1	sample5	Sample	a
11	A11		ROX	detector1	sample6	Sample	a
12	A12		ROX	detector1	sample6	Sample	a
13	B1		ROX	detector2	sample1	Sample	a
14	B2		ROX	detector2	sample1	Sample	a
15	B3		ROX	detector2	sample2	Sample	a
16	B4		ROX	detector2	sample2	Sample	ď
17	B5		ROX	detector2	sample3	Sample	ď
18	B6		ROX	detector2	sample3	Sample	a
19	87		ROX	detector2	sample4	Sample	ã
20	B8		ROX	detector2	sample4	Sample	ã
21	B9		ROX	detector2	sample5	Sample	ã
22	B10		ROX	detector2	sample5	Sample	a
23	B11		ROX	detector?	samnleß	Samnle	28

9.3 LC

Name:	LCfile	
Barcode:		
Description:		
SDS File:	LCfile	
Rn Files:	LCfileExport	
Size:	24 💌	Edit
Display Charts:	Show	
Display Ct Analyze Results:	Show	
Design:		

Page 1 of 1

Go to page 1

Go

Items per page 96 Go

Nr.	Well Number	Omitted	Passive Reference	Detector(s)	cDNA	Task	
1	Pos O			Detector1	Sample1	Unknown	ã
2	Pos 1			Detector1	Sample2	Unknown	ã
3	Pos 2			Detector2	Sample3	Unknown	ã
4	Pos 3			Detector2	Sample4	Unknown	ã
5	Pos 4			Detector3	Sample5	Unknown	ã
6	Pos 5			Detector1	Sample1	Unknown	ã
7	Pos 6			Detector1	Sample2	Unknown	ã
8	Pos 7	Γ		Detector2	Sample3	Unknown	ã
9	Pos 8	Γ		Detector2	Sample4	Unknown	ã
10	Pos 9	Г		Detector3	Sample5	Unknown	<u>a</u>

10 Cq Analyze Results

By clicking on the Show button next to Display Cq Analyze Results an overview page is shown, which lists the performed Cq analysis results. Each result can be exported or displayed in detail, shown in the next image.

Here you can check the calculated Cq and efficiency values.

Detailed Analyzer Results

Plate:	File1	Show
Analyzer:	AnalyzerMiner	
Date:	2008-09-12 at 9:45:50	
Export List:	CSV	✓ Export
Back to Overview:	Show	

Plate	Well	Sample Name	Target(s)	Cq	Efficiency
example	A1	sample1	detector1	27.7037	1.7186
example	A2	sample1	detector1	27.4865	1.7415
example	A3	sample2	detector1	26.5125	1.6769
example	A4	sample2	detector1	26.4674	1.71
example	A5	sample3	detector1	27.2452	1.6978
example	A6	sample3	detector1	27.305	1.7513
example	A7	sample4	detector1	26.634	1.6809
example	A8	sample4	detector1	26.8422	1.6678
example	A9	sample5	detector1	28.0017	1.7338
example	A10	sample5	detector1	27.9115	1.7334
example	A11	sample6	detector1	27.0018	1.7098
example	A12	sample6	detector1	26.9511	1.6974
ovemplo	R1	cemplo1	datactor2	1020 20	1 6697

11 Charts

11.1 Information

The chart view (accessed by clicking on Show next to Display Charts in the plate view) is used to display graphs of dissociation and fluorescence data (if available). To switch between the different views click on the tabs in the top bar. Below the chart a grid/list is shown which represents the used plate layout. By clicking on a well, it is included/excluded from the chart which is then automatically updated. You can select multiple wells at once by holding the "ctrl" key while selecting them. Additionally you can click on every well individually. Here you can check whether the melting curve analysis was successful and you can get a rough overview of the shape of the fluorescence curves.

11.2 SDS

The grid beneath the chart displays the used plate layout. It colors empty and omitted wells and currently selected wells are colored in red.

11.3 LC

Since the Lightcycler 2.0 uses a linear plate layout the grid beneath the chart changed to a list view.

12 Experiment

Since the upcoming steps are the same for the **SDS** and the **LC** files, only the **SDS** run is considered in the next steps. However you can view the results of the **LC** run by using the guest account of the QPCR application.

After you have taken a look at the generated runs and evaluated the parsed and analyzed results it is necessary to create a new experiment. Experiments consist of one or many runs (e.g.: experiment is spread over multiple plates because of the limited amount of wells on one plate) which are analyzed together. To create an experiment click on Experiment and select New Experiment. Define name, date, and description and choose the runs which should be in this experiment. Multiple runs are selected by holding the ctrl key.

Experiment			
New Experiment	New E	xperiment	
Find Experiments			
Run			
Upload & Parse			
PCR Management	Name:	SDS experiment	
Management	Date:	10.09.2008	
	Description:	tutorial SDS experiment	
	.e. 23	Ele1	×
	Runs:	LCfile	
			v

Now you see the created experiment. The first icon links you directly to the analysis page and skips the experiment information page.

Ex	perimen	t							
	🔎 Query	👸 Edit I	Displa	ıy Se	etting	5			
								Experiments per page: 15 [25] 50	10
1 Exp	eriments found						Page 1 of 1	go to page	go
Nr.	Name	Date							
1	SDS experiment	2008-09-10	10	đ	1 😫	×			
								Experiments per page: 15 [25] 50	10

By clicking on the name of the experiment you are guided to the following screen which provides links to the runs in the experiment and the calculated Cq/efficiency results.

Show I	Experiment		
Name:	SDS experiment		
Date:	10.09.2008		
Description:	tutorial SDS experiment	-	
Runs:	File1	Show	Show Ct and Efficiency Results
Annaharan	Gol		

13 Analysis

To analyze an experiment you have to define several parameters. In this tutorial one way to analyze the experiment is shown. In order to get detailed information about the parameters please consult the user guide.

During the analysis relative quantities are calculated using averaging of technical replicates, normalization against reference genes, and inter-run calibration. For more details consult the paper "qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data" by Hellemans *et al.* (2007).

13.1 Cq Calculation Methods

Please pick the Cq calculation method you have selected in the user settings. Therefore the Cq values for the used runs exist and can be used in the upcoming analysis.

Analyze	Setup					
Experiment: E: Save Setting: Setting:	kample		Show Save			
Cq Calculation Me	ethods		Sample/Target	Reference Genes	Normalization	
Use Name Analyzeri Analyzeri SoFARA 	Descr Miner Anal and 1624 and Cy0 Effi meth Anal Mich Nalyze Anal Vilh (Wil stan	upion yzerMiner impl Fernald in [Zh 1997). It oper calculates Cq ciency: Use th iod or determin yzerCyO implem ele Guescini a yzerSoFar impl elm in [Wilhel helm et al., 2 ds for <softwa< th=""><th>ements the model described by Zhao ao and Fernald, 2005] (PHID: ates on the raw fluorescence data value, efficiency, and starting e efficiency calculated by another ed by primer validation! ents the model described by nd Davide Sisti et al. in [A new ements the algorithm described by m, 2003] and Wilhelm et al. in 003] (PHID: 12613255). SoFar re For the Analysis of Real-time</th><th></th><th></th><th></th></softwa<>	ements the model described by Zhao ao and Fernald, 2005] (PHID: ates on the raw fluorescence data value, efficiency, and starting e efficiency calculated by another ed by primer validation! ents the model described by nd Davide Sisti et al. in [A new ements the algorithm described by m, 2003] and Wilhelm et al. in 003] (PHID: 12613255). SoFar re For the Analysis of Real-time			
O SDSAnal	yzer Anal one Bios line	yzerSDS implem used by by the ystems. It use fitted into t	ents an algorithm similar to the SDS 2.2.2 software from Applied s a dynamic baseline created by a he area prior to the exponential	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX<l< th=""><th></th><th></th></l<>		
Cq Values exist			Efficiency Values exist			Analyze

13.2 Sample/Detector

Here you can specify which samples and targets are used in the analysis. In this tutorial all samples and targets are used. Please tick "Use Replicate Handling" and leave "Average technical replicates over plate" unticked.

Cq Calculation Methods	Sample/Target	Reference Genes	Normalization
Use Replicate Handling Average technical replicates over plates Samples	Used Samples		
2	sample1 sample2 sample3 sample4 sample5 sample6		
Targets	Used Targets		
	detector1 detector2 detector3 detector4 detector5 detector6 v		
Cq Values exist	Efficiency Values exist		Analyze

13.3 Reference Genes

This tab lets you choose which tragets should act as reference genes. It is possible to select multiple reference genes or analyze the experiment without a reference gene.

Cq Calculation Methods	Sample/Target	Reference Genes	Normalization
Reference Gene(s) need to be on all plates Reference Gene list detector2 detector3 detector4 detector6 detector6 detector7	Used Reference Genes Used Reference Genes		
Cq Values exist	Efficiency Values exist		Analyze

13.4 Normalization

In this view you can select which efficiency should be incorporated into the analysis. To follow the tutorial use Use Efficiency of Analyzer and select the analyzer you have picked in the user settings.

Cq Calculatio	on Methods	Sam	ple/Target	Reference Genes	Normalization	
Define Effi	iciency					^
🔲 Cal	culate Efficiency (if pos	sible) from dilution serie	s			
O Glo	bal Efficiency					
Eff	ficiency:	2				
SE	Efficiency:	0.05				
📀 Use	e Efficiency of Analyzer	AnalyzerMiner	*			
And and 163	alyzerMiner imp d Fernald in [2: 241897). It ope: ctifyEfficiencyforeach	lements the model hao and Fernald, rates on the raw Demector	described by Zhao 2005] (PMID: fluorescence data			
Use	Primer Validation Pla	te: 💌				
D	etector Efficiency	SE Eff	Plate			
de	etector1 2	0.05				
de	etector2 2	0.05				
de	etector3 2	0.05				
de	etector4 2	0.05				~
Cq Values	exist		Efficiency Values exist			Analyze

Now the setup is complete and you can press the Analyze button to start the analysis.

14 Analysis results

14.1 Overview

The page displayed, after the analysis has been performed, lists the calculated results and the provided legend gives information about the meaning of each result. By clicking on one or more Reference Samples you can select the samples used as a reference. By clicking on the Show/Hide log2 button you can display log2 values of the calculated results.

Experime	nt:		SDS expe	eriment		Show									
Back To A	nalyze Setup	»: (Show												
Display Ba	rs & Quality	Control:	Show												
Perform 9	statistical Te	st:	Show												
Reference	e Samples:		sample1		^										
Save Horn	nalize Result	te'	Save		×										
save norn	nanze kesun		Save												
CSV	*	Export													
egend	target	task	ava Ca	SE avo Co	SD avg Cg	CV	rel Ca	SE rel Ca	SD rel Ca	NRCa	SENRCa	SD NRCa	CNRCa	SECNRCa	SD CNF
egend cDNA sample1	target detector1	task Sample	avg Cq 27.5951	SE avg Cq 0.1086	SD avg Cq 0.1536	CV	rel Cq 0.793	SE rel Cq 0.0473	SD rel Cq 0.0668	NRCq	SE NRCq	SD NRCq 0.0989	CNRCq	SE CNRCq	SD CNF
egend c DNA sample1 sample2	target detector1 detector1	task Sample Sample	avg Cq 27.5951 26.4899	SE avg Cq 0.1086 0.0226	SD avg Cq 0.1536 0.0319	CV 0.3936 0.0852	rel Cq 0.793 1.4323	SE rel Cq 0.0473 0.0217	SD rel Cq 0.0668 0.0276	NRCq 0.986 0.9125	SE NRCq 0.07 0.0251	SD NRCq 0.0989 0.029	CNRCq 0.986 0.9125	SE CNRCq 0.07 0.0251	SD CNF 0.0989 0.029
egend cDNA sample1 sample2 sample3	target detector1 detector1 detector1	task Sample Sample Sample	avg Cq 27.5951 26.4899 27.2751	SE avg Cq 0.1086 0.0226 0.0299	SD avg Cq 0.1536 0.0319 0.0423	CV 0.3936 0.0852 0.1097	rel Cq 0.793 1.4323 0.9453	SE rel Cq 0.0473 0.0217 0.0156	SD rel Cq 0.0668 0.0276 0.0219	NRCq 0.986 0.9125 0.9195	SE NRCq 0.07 0.0251 0.0557	SD NRCq 0.0989 0.029 0.0787	CNRCq 0.986 0.9125 0.9195	SE CNRCq 0.07 0.0251 0.0557	SD CNF 0.0989 0.029 0.0787
egend cDNA sample1 sample2 sample3 sample4	target detector1 detector1 detector1 detector1	task Sample Sample Sample Sample	avg Cq 27.5951 26.4899 27.2751 26.7381	SE avg Cq 0.1086 0.0226 0.0299 0.1041	SD avg Cq 0.1536 0.0319 0.0423 0.1472	CV 0.3936 0.0852 0.1097 0.3892	rel Cq 0.793 1.4323 0.9453 1.2506	SE rel Cq 0.0473 0.0217 0.0156 0.0672	SD rel Cq 0.0668 0.0276 0.0219 0.0949	NRCq 0.986 0.9125 0.9195 0.9446	SE NRCq 0.07 0.0251 0.0557 0.0677	SD NRCq 0.0989 0.029 0.0787 0.0957	CNRCq 0.986 0.9125 0.9195 0.9446	SE CNRCq 0.07 0.0251 0.0557 0.0677	SD CNF 0.0989 0.029 0.0787 0.0957
egend cDNA sample1 sample2 sample3 sample4 sample5	target detector1 detector1 detector1 detector1	task Sample Sample Sample Sample Sample	avg Cq 27.5951 26.4899 27.2751 26.7381 27.9566	SE avg Cq 0.1086 0.0226 0.0299 0.1041 0.0451	SD avg Cq 0.1536 0.0319 0.0423 0.1472 0.0638	CV 0.3936 0.0852 0.1097 0.3892 0.1614	rel Cq 0.793 1.4323 0.9453 1.2506 0.6494	SE rel Cq 0.0473 0.0217 0.0156 0.0672 0.0161	SD rel Cq 0.0668 0.0276 0.0219 0.0949 0.0228	NRCq 0.986 0.9125 0.9195 0.9446 1.1118	SE NRCq 0.07 0.0251 0.0557 0.0677 0.0329	SD NRCq 0.0989 0.029 0.0787 0.0957 0.0458	CNRCq 0.986 0.9125 0.9195 0.9446 1.1118	SE CNRCq 0.07 0.0251 0.0557 0.0677 0.0329	SD CNF 0.0989 0.029 0.0787 0.0957 0.0458
egend cDNA sample1 sample2 sample3 sample4 sample5 sample6	target detector1 detector1 detector1 detector1 detector1 detector1	task Sample Sample Sample Sample Sample	avg Cq 27.5951 26.4899 27.2751 26.7381 27.9566 26.9764	SE avg Cq 0.1086 0.0226 0.0299 0.1041 0.0451 0.0253	SD avg Cq 0.1536 0.0319 0.0423 0.1472 0.0638 0.0358	CV 0.3936 0.0852 0.1097 0.3892 0.1614 0.0939	rel Cq 0.793 1.4323 0.9453 1.2506 0.6494 1.1097	SE rel Cq 0.0473 0.0217 0.0156 0.0672 0.0161 0.015	SD rel Cq 0.0668 0.0276 0.0219 0.0949 0.0228 0.0212	NRCq 0.986 0.9125 0.9195 0.9446 1.1118 1.1035	SE NRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175	SD NRCq 0.0989 0.029 0.0787 0.0957 0.0458 0.0246	CNRCq 0.986 0.9125 0.9195 0.9446 1.1118 1.1035	SE CNRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175	SD CNF 0.0989 0.029 0.0787 0.0957 0.0458 0.0246
egend cDNA sample1 sample2 sample3 sample4 sample5 sample6 sample1	target detector1 detector1 detector1 detector1 detector1 detector1 detector1	task Sample Sample Sample Sample Sample Sample	avg Cq 27.5951 26.4899 27.2751 26.7381 27.9566 26.9764 26.8743	SE avg Cq 0.1086 0.0226 0.0299 0.1041 0.0451 0.0253 0.0948	SD avg Cq 0.1536 0.0319 0.0423 0.1472 0.0638 0.0358 0.1341	CV 0.3936 0.0852 0.1097 0.3892 0.1614 0.0939 0.3527	rel Cq 0.793 1.4323 0.9453 1.2506 0.6494 1.1097 0.8157	SE rel Cq 0.0473 0.0217 0.0156 0.0672 0.0161 0.015 0.0398	SD rel Cq 0.0668 0.0276 0.0219 0.0949 0.0228 0.0212 0.0563	NRCq 0.986 0.9125 0.9195 0.9446 1.1118 1.1035 1.0142	SE NRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631	SD NRCq 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892	CNRCq 0.986 0.9125 0.9195 0.9446 1.1118 1.1035 1.0142	SE CNRCq 0.07 0.0251 0.0657 0.0677 0.0329 0.0175 0.0631	SD CNF 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892
egend cDNA sample1 sample2 sample3 sample4 sample5 sample6 sample1 sample2	target detector1 detector1 detector1 detector1 detector1 detector1 detector2	task Sample Sample Sample Sample Sample Sample Sample	avg Cq 27.5951 26.4899 27.2751 26.7381 27.9566 26.9764 26.8743 25.5159	SE avg Cq 0.1086 0.0226 0.1041 0.0451 0.0253 0.0948 0.0303	SD avg Cq 0.1536 0.0319 0.0423 0.1472 0.0638 0.0358 0.1341 0.0429	CV 0.3936 0.0852 0.1097 0.3892 0.1614 0.0939 0.3527 0.1188	rel Cq 0.793 1.4323 0.9453 1.2506 0.6494 1.1097 0.8157 1.7201	SE rel Cq 0.0473 0.0217 0.0156 0.0672 0.0161 0.015 0.0398 0.0747	SD rel Cq 0.0668 0.0276 0.0219 0.0949 0.0228 0.0212 0.0563 0.0803	NRCq 0.986 0.9125 0.9195 0.9446 1.1118 1.1035 1.0142 1.0959	SE NRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538	SD NRCq 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581	CNRCq 0.986 0.9125 0.9195 0.9446 1.1118 1.1035 1.0142 1.0959	SE CNRCq 0.07 0.0251 0.0657 0.0677 0.0329 0.0175 0.0631 0.0538	SD CNF 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581
egend cDNA sample1 sample2 sample3 sample4 sample6 sample6 sample6 sample2 sample3	target detector1 detector1 detector1 detector1 detector1 detector2 detector2 detector2	task Sample Sample Sample Sample Sample Sample Sample Sample	avg Cq 27.5951 26.4899 27.2751 26.7381 27.9566 26.9764 26.8743 26.5159 26.2716	SE avg Cq 0.1086 0.0226 0.0299 0.1041 0.0451 0.0253 0.0948 0.0303 0.2141	SD avg Cq 0.1536 0.0319 0.0423 0.1472 0.0638 0.0358 0.1341 0.0429 0.3028	CV 0.3936 0.0852 0.1097 0.3892 0.1614 0.0939 0.3527 0.1188 0.8149	rel Cq 0.793 1.4323 0.9453 1.2506 0.6494 1.1097 0.8157 1.7201 1.118	SE rel Cq 0.0473 0.0217 0.0156 0.0672 0.0161 0.015 0.0398 0.0747 0.1291	SD rel Cq 0.0668 0.0276 0.0219 0.0949 0.0228 0.0212 0.0563 0.0803 0.1825	NRCq 0.986 0.9125 0.9195 0.9446 1.1118 1.1035 1.0142 1.0959 1.0875	SE NRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538 0.1407	SD NRCq 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581 0.1988	CNRCq 0.986 0.9125 0.9194 1.0143 1.1035 1.0142 1.0875	SE CNRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0638 0.1407	SD CNF 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581 0.1988
egend cDNA sample1 sample2 sample3 sample4 sample5 sample6 sample2 sample2 sample3 sample4	target detector1 detector1 detector1 detector1 detector1 detector1 detector2 detector2 detector2 detector2	task Sample Sample Sample Sample Sample Sample Sample Sample Sample	avg Cq 27.5951 26.4899 27.2751 26.7381 27.9566 26.9764 26.8743 25.5159 26.2716 25.8416	SE avg Cq 0.1086 0.0226 0.0299 0.1041 0.0451 0.0253 0.0948 0.0303 0.2141 0.1476	SD avg Cq 0.1536 0.0319 0.0423 0.1472 0.0638 0.0358 0.1341 0.0429 0.3028 0.2088	CV 0.3936 0.0852 0.1097 0.3892 0.1614 0.0939 0.3527 0.1188 0.8149 0.5712	rel Cq 0.793 1.4323 0.9453 1.2506 0.6494 1.1097 0.8157 1.7201 1.118 1.4016	SE rel Cq 0.0473 0.0217 0.0156 0.0672 0.0161 0.0398 0.0747 0.1291 0.1097	SD rel Cq 0.0668 0.0276 0.0219 0.0949 0.0228 0.0222 0.0563 0.0803 0.1825 0.1551	NRCq 0.986 0.9125 0.9446 1.1118 1.1035 1.0142 1.0959 1.0875	SE NRC4 0.07 0.0251 0.0557 0.0577 0.0329 0.0175 0.0631 0.0631 0.1407 0.0969	SD NRCq 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581 0.1988 0.137	CNRCq 0.986 0.9125 0.9446 1.1118 1.1035 1.0142 1.0959 1.0875	SE CNRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538 0.1407 0.0969	SD CNF 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581 0.1988 0.137
egend cDNA sample1 sample2 sample3 sample4 sample6 sample6 sample2 sample3 sample4 sample5	target detector1 detector1 detector1 detector1 detector1 detector1 detector2 detector2 detector2 detector2 detector2 detector2	task Sample Sample Sample Sample Sample Sample Sample Sample Sample	avg Cq 27.5951 26.4899 27.2751 26.7381 27.9566 26.9764 26.8743 25.5159 26.2716 25.8416 27.7122	SE avg Cq 0.1086 0.0226 0.0299 0.1041 0.0451 0.0253 0.0948 0.0303 0.2141 0.1476 0.0279	SD avg Cq 0.1536 0.0319 0.0423 0.1472 0.0638 0.0358 0.0358 0.1341 0.0429 0.3028 0.2088 0.0395	CV 0.3936 0.0852 0.1097 0.3892 0.1614 0.0939 0.3527 0.1188 0.8149 0.5712 0.1007	rel Cq 0.793 1.4323 0.9453 1.2506 0.6494 1.1097 0.8157 1.7201 1.118 1.4016 0.5253	SE rel Cq 0.0473 0.0217 0.0156 0.0672 0.0161 0.015 0.0398 0.0747 0.1291 0.1097 0.0107	SD rel Cq 0.0668 0.0276 0.0219 0.0949 0.0228 0.0212 0.0563 0.0803 0.1825 0.1551 0.0131	NRCq 0.986 0.9125 0.9446 1.1118 1.035 1.0142 1.0959 1.0875 0.8994	SE NRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538 0.1407 0.0969 0.0233	SD NRCq 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581 0.1988 0.137 0.0297	CNRCq 0.986 0.9125 0.9446 1.1118 1.0345 1.0142 1.0959 1.0875 1.0587 0.8994	SE CNRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538 0.1407 0.0969 0.0233	SD CNF 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581 0.1988 0.137 0.0297
egend cDNA sample1 sample2 sample3 sample4 sample6 sample6 sample1 sample3 sample4 sample5 sample5	target detector1 detector1 detector1 detector1 detector1 detector2 detector2 detector2 detector2 detector2 detector2	task Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample	avyg Cq 27.5961 26.4899 27.2751 26.7381 27.9666 26.9764 26.8743 26.5159 26.2716 25.8416 27.7122 26.6569	SE avg Cq 0.1086 0.0226 0.0299 0.1041 0.0451 0.0253 0.0948 0.0303 0.2141 0.1476 0.0279 0.0173	SD avg Cq 0.1536 0.0319 0.0423 0.1472 0.0638 0.0358 0.0358 0.1341 0.0429 0.3028 0.2088 0.0395 0.0244	CV 0.3936 0.0852 0.1097 0.3892 0.3627 0.3527 0.1188 0.8149 0.5712 0.1007 0.0647	rel Cq 0.793 1.4323 0.9453 1.2506 0.6494 1.1097 0.8157 1.7201 1.118 1.4016 0.5253 0.9113	SE rel Cq 0.0473 0.0217 0.0156 0.0672 0.0161 0.0398 0.0747 0.1291 0.1097 0.0107	SD rel Cq 0.0668 0.0276 0.0219 0.0949 0.0228 0.0212 0.0563 0.0803 0.1825 0.1551 0.0131 0.0119	NRCq 0.986 0.9125 0.9146 1.1118 1.1035 1.0142 1.0875 1.0587 0.8994 0.9062	SE NRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538 0.1407 0.0969 0.0233 0.0113	SD NRCq 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581 0.1988 0.137 0.0297 0.0158	CNRCq 0.986 0.9125 0.9446 1.1118 1.1035 1.0142 1.0959 1.0875 1.0587 0.8994 0.9062	SE CNRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538 0.1407 0.0969 0.0233 0.0113	SD CNF 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581 0.1988 0.137 0.0297 0.0158
egend cDNA sample1 sample2 sample3 sample4 sample6 sample6 sample1 sample2 sample4 sample5 sample6 sample6	target detector1 detector1 detector1 detector1 detector2 detector2 detector2 detector2 detector2 detector2 detector2 detector3	task Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample	avyg Cq 27.5961 26.4899 27.2751 26.7381 27.9566 26.9764 26.8743 25.5159 26.2716 25.8416 27.7122 26.6569 33.5452	SE avg Cq 0.1086 0.0226 0.0299 0.1041 0.0451 0.0253 0.0948 0.0303 0.2141 0.1476 0.0279 0.0173 0.2055	SD avg Cq 0.1536 0.0319 0.0423 0.1472 0.0638 0.0358 0.0358 0.1341 0.0429 0.3028 0.2088 0.0395 0.0244 0.2906	CV 0.3936 0.0852 0.1097 0.3892 0.3614 0.0939 0.3527 0.1188 0.8149 0.5712 0.1007 0.0647 0.6126	rel Cq 0.793 1.4323 0.9453 1.2506 0.6494 1.1097 0.8157 1.7201 1.118 1.4016 0.5253 0.9113 1.1159	SE rel Cq 0.0473 0.0217 0.0156 0.0672 0.0161 0.0398 0.0747 0.1291 0.1097 0.0107 0.0086 0.1303	SD rel Cq 0.0668 0.0276 0.0219 0.0249 0.0228 0.0212 0.0563 0.0803 0.1825 0.1551 0.1551 0.0131 0.0119 0.11842	NRCq 0.986 0.9125 0.9446 1.1118 1.0142 1.0959 1.0875 1.0587 0.99062 1.3875	SE NRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538 0.1407 0.0969 0.0233 0.0113 0.1706	SD NRCq 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0581 0.1988 0.137 0.0297 0.0158 0.2412	CNRCq 0.986 0.9125 0.9446 1.1118 1.1035 1.0142 1.0879 1.0875 0.8994 0.9062 1.3875	SE CNRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538 0.1407 0.0969 0.0233 0.0113 0.1706	SD CNF 0.0989 0.029 0.0787 0.0957 0.0458 0.0246 0.0892 0.0892 0.1988 0.137 0.0297 0.0158 0.2412
egend cDNA sample1 sample2 sample3 sample4 sample5 sample2 sample2 sample4 sample5 sample6 sample1 sample2	target detector1 detector1 detector1 detector1 detector1 detector2 detector2 detector2 detector2 detector2 detector2 detector2 detector2 detector3 detector3	task Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample	avg Cq 27.5951 26.4899 27.2751 26.7381 27.9666 26.9764 26.9764 25.5159 26.2716 25.8416 27.7122 26.6569 33.5452 33.022	SE avg Cq 0.1086 0.0226 0.0299 0.1041 0.0451 0.0253 0.0948 0.0948 0.0303 0.2141 0.1476 0.0279 0.0173 0.0173 0.2055 0.1097	SD avg Cq 0.1536 0.0319 0.0423 0.1472 0.0638 0.0358 0.0358 0.1341 0.0429 0.3028 0.2088 0.0395 0.0244 0.2906 0.1551	CV 0.3936 0.0852 0.1097 0.3892 0.1614 0.0939 0.3527 0.1188 0.8149 0.5712 0.1007 0.0647 0.6126 0.3321	rel Cq 0.793 1.4323 0.9453 1.2506 0.6494 1.1097 0.8157 1.7201 1.118 1.4016 0.5253 0.9113 1.1159 1.465	SE rel Cq 0.0473 0.0217 0.0156 0.0672 0.0161 0.0398 0.0747 0.1291 0.1097 0.0107 0.0086 0.1303 0.0894	SD rel Cq 0.0668 0.0276 0.0219 0.0249 0.0228 0.0212 0.0563 0.0803 0.1825 0.1551 0.1551 0.0131 0.0131 0.0119 0.1842 0.1238	NRCq 0.986 0.9125 0.9446 1.1118 1.1035 1.0142 1.0875 1.0875 1.0587 0.99062 1.3875 0.9334	SE NRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538 0.1407 0.0969 0.0233 0.0113 0.1706 0.0609	SD NRCq 0.0989 0.029 0.0787 0.0458 0.0458 0.0246 0.0892 0.0581 0.1988 0.137 0.0297 0.0297 0.0158 0.2412 0.0823	CNRCq 0.986 0.9125 0.9446 1.1118 1.1035 1.0142 1.0959 1.0875 0.8994 0.9062 1.3875 0.9334	SE CNRCq 0.07 0.0251 0.0557 0.0677 0.0329 0.0175 0.0631 0.0538 0.1407 0.0969 0.0233 0.0113 0.1706 0.0609	SD CNF 0.0989 0.029 0.0787 0.0957 0.0468 0.0246 0.0892 0.0581 0.1988 0.137 0.0297 0.0158 0.2412 0.0823

By clicking on Display Bars & Quality Control you are directed to the page which graphically displays the analysis results.

14.2 Multiple Targets

Here you can graphically view the calculated results and compare them for several targets. It allows you to customize it in many ways including error type, the used sample references, the grouping performed in the chart, title of the chart, and the samples displayed.

Display Normalization Result - Bars SDS experiment Experiment: Show Back To Analyze Setup: Show Display Normalization Result: Show Perform Statistical Test: Show Multiple Targets Single Target HK Quality Control Bar Chart - SE (1.0) 1.6 1.5 detector detector detector 1.4 1.3 SE ~ 1 1.2 Error: References 1.1 ^ sample1 1.0 sample2 0.9 CNRCt Title 0.8 0.7 Group By Sample 💌 0.6 Display: Sample 0.5 sample1 0.4 Sample2 0.3 Sample3 0.2 Sample4 0.1 sample5 0.0 Samplez Samples samples Sampler sample? sample ✓ sample6 detector1 detector2 detector3 Export As SVG

14.3 Single Target

The Single Target tab lets you view the results of a single selected traget. It provides the same customizability as the Multiple Target tab and additionally lets you choose the color of each sample and allows you to give each sample an alternative name. By using drag and drop you can rearrange the list of the displayed samples. In the customize Chart section you can edit the appearance of the chart to your needs.

The customize chart section lets you additionally adjust the chart.

14.4 Quality Control

Quality control for reference genes can only be performed by selecting multiple reference genes. An example is provided below. Please consult the user guide for more information.

Moreover quality controls are performed for NTCs and technical replicates.

Multip	le Target	s		Single Target	HK Quality Control
		CV	M (geNorm)		
de	tector1	9.04 %	0.2565		
de	tector2	8.72 %	0.2565		
Me	ean	8.88 %	0.2565		
ta	rget	has NTC			
de	tector1	false			
de	tector2	false	_		
de	tector3	false			
de	tector4	false			
de	tector5	false			
de	tector6	false			
de	tector7	false			
de	tector8	false			
			_		
Ex	perimen	tReplicat	es threshold::	0.3 Show	
ta	rget	cDNA	difference	#	
de	tector8	sample®	0.1799	2	
de	tector8	sample5	0.3121	2	
de	tector8	sample4	0.1712	2	
de	tector8	sample3	0.2569	2	
de	tector8	sample2	0.0497	2	
de	tector8	sample1	0.0477	2	
de	tector7	sample8	0.2121	2	
de	tector7	sample5	0.1909	2	
de	tector7	sample4	0.2016	2	
de	tector7	sample3	0.1536	2	
de	tector7	sample2	0.2071	2	
de	tector7	sample1	0.0564	2	
de	tector6	sample8	0.0	1	
de	tector6	sample5	0.3483	2	
de	tector6	sample4	1.3124	2	
			0.0407	2	

15 Statistical Test

15.1 Setup

Statistical tests are used to test several groups (in the software named as class) of samples for significant difference between them. Here you can define which samples should be included in the test and which samples or which class should act as reference. Moreover you can choose the method and which p-Value type should be used. For more information click on the icon or consult the user guide. In this tutorial the standard settings are used.

Perform delta	delta CT	calcul	ation		
Experiment: S Back To Analyze Setup: S Display Normalization Result:	DS experiment		Show		
Reference Calculation:					
Samples:	sample3 sample4 sample5 sample6		 Image: A state of the state of		
Reference:	Samples:	sample1 sample2			
	O Class:	class 1		*	
Statistical Test:					
Choose Test:	Permutation N	/lean Test	v 0		
Choose p-Value Type:	TWOSIDED		~		
Choose Testing Correction:			*		
Choose Datatype:	CNRCq		*		
Average samples in class:					

You can add as many classes as you want to the statistical test. On class acts as the statistical reference (reference class) and all other classes are tested for their statistical significant difference to this reference class. Do not confuse this with the sample references which are used to reference the samples to a given set of samples (no statistical test).

Each class has a color or pattern associated, is given a specific name, and needs to consist of at least one sample. In one class the property Set As Statistical Reference is set which specifies to which class all other classes are compared.

In this case the classes consist of 3 biological replicates and are therefore named "replicates 1" and "replicates 2". Those replicates are then tested for their statistical significant difference.

Choose Classes:	Add Class Remove Last	Class
	Class 1	Remove
	Set As Statistical Reference	
	Green	~
	sample1 sample2 sample3 sample4 sample5 sample6	<
	Class 2	Remove
	Set As Statistical Reference	
	Grey	*
	sample1 sample2 sample3 sample4	<
	sample5 sample6	~
	Add Class Remove Last	Class
Analyze		

15.2 Result

The upper section of the statistical result page provides links back to the various analysis pages and gives you the opportunity to export the generated results.

oisplay Statistical Test Results - Bars							
Experiment:	SDS experiment	Show					
Back To Analyze Setup:	Show						
Display Normalization Result:	Show						
Perform Statistical Test:	Show						
Display Test Result:	Show						
Statistical Test:	Permutation Mean Test						
		-					
CSV 💌 Expo	ort						

Next the results for each target are shown. As an example detector1 is presented in this document.

Target: detector1

In addition to the graphical view results of the statistical test can be displayed in text format. This view is accessed by clicking on show next to Display Test Result

detector1

CI	ass	p-Valu	ie 🤅	Ø ddCt / reference		Ø SE d	ldCt / reference	Ø SD ddCt / reference	Is Statistical Reference
re	plicates 1	-	-			-		-	true
	Sample		ddC	t SE ddCt	SD (ddCt			
	sample1		1.0	0.023332	0.03	2996			
	sample2		1.0	0.028336	0.04	0074			
	sample3		1.0	0.05177	0.07	3213			
	Avg replicates 1		1.0	0.017272	2 0.029916				
re	plicates 2	1.0	1	.0		0.0306	;	0.053	false
	Consta				c.p.	1.1.04		1	
	Sample		aac	t SE ddCt	SDO	aact			
	sample4		1.0	0.067074	0.09	4856			
	sample5		1.0	0.06139	0.08	86818			
	sample6		1.0	0.019126	0.027049				
	Avg replic:	ates 2	1.0	0.025289	0.04	3801			

16 Export

All relevant result can be exported using the provided mechanism.

Export	CSV	-
--------	-----	---

In addition each graph can be saved by right clicking on it and selecting e.g.: "save image as". If you want to save it as SVG file you can use the provided button right beneath the displayed image.

For more information about the QPCR application please consult the user guide.